Metagenomic and metaproteomic analyses of a corn stover-adapted microbial consortium EMSD5 reveal its taxonomic and enzymatic basis for degrading lignocellulose

نویسندگان

  • Ning Zhu
  • Jinshui Yang
  • Lei Ji
  • Jiawen Liu
  • Yi Yang
  • Hongli Yuan
چکیده

BACKGROUND Microbial consortia represent promising candidates for aiding in the development of plant biomass conversion strategies for biofuel production. However, the interaction between different community members and the dynamics of enzyme complements during the lignocellulose deconstruction process remain poorly understood. We present here a comprehensive study on the community structure and enzyme systems of a lignocellulolytic microbial consortium EMSD5 during growth on corn stover, using metagenome sequencing in combination with quantitative metaproteomics. RESULTS The taxonomic affiliation of the metagenomic data showed that EMSD5 was primarily composed of members from the phyla Proteobacteria, Firmicutes and Bacteroidetes. The carbohydrate-active enzyme (CAZyme) annotation revealed that representatives of Firmicutes encoded a broad array of enzymes responsible for hemicellulose and cellulose deconstruction. Extracellular metaproteome analysis further pinpointed the specific role and synergistic interaction of Firmicutes populations in plant polysaccharide breakdown. In particular, a wide range of xylan degradation-related enzymes, including xylanases, β-xylosidases, α-l-arabinofuranosidases, α-glucuronidases and acetyl xylan esterases, were secreted by diverse members from Firmicutes during growth on corn stover. Using label-free quantitative proteomics, we identified the differential secretion pattern of a core subset of enzymes, including xylanases and cellulases with multiple carbohydrate-binding modules (CBMs). In addition, analysis of the coordinate expression patterns indicated that transport proteins and hypothetical proteins may play a role in bacteria processing lignocellulose. Moreover, enzyme preparation from EMSD5 demonstrated synergistic activities in the hydrolysis of pretreated corn stover by commercial cellulases from Trichoderma reesei. CONCLUSIONS These results demonstrate that the corn stover-adapted microbial consortium EMSD5 harbors a variety of lignocellulolytic anaerobic bacteria and degradative enzymes, especially those implicated in hemicellulose decomposition. The data in this study highlight the pivotal role and cooperative relationship of Firmicutes members in the biodegradation of plant lignocellulose by EMSD5. The differential expression patterns of enzymes reveal the strategy of sequential lignocellulose deconstruction by EMSD5. Our findings provide insights into the mechanism by which consortium members orchestrate their array of enzymes to degrade complex lignocellulosic biomass.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Metagenomic Analysis of the Gut Microbiome of the Common Black Slug Arion ater in Search of Novel Lignocellulose Degrading Enzymes

Some eukaryotes are able to gain access to well-protected carbon sources in plant biomass by exploiting microorganisms in the environment or harbored in their digestive system. One is the land pulmonate Arion ater, which takes advantage of a gut microbial consortium that can break down the widely available, but difficult to digest, carbohydrate polymers in lignocellulose, enabling them to diges...

متن کامل

A novel and efficient fungal delignification strategy based on versatile peroxidase for lignocellulose bioconversion

BACKGROUND The selective lignin-degrading white-rot fungi are regarded to be the best lignin degraders and have been widely used for reducing the saccharification recalcitrance of lignocellulose. However, the biological delignification and conversion of lignocellulose in biorefinery is still limited. It is necessary to develop novel and more efficient bio-delignification systems. RESULTS Phys...

متن کامل

Deciphering lignocellulose deconstruction by the white rot fungus Irpex lacteus based on genomic and transcriptomic analyses

Background Irpex lacteus is one of the most potent white rot fungi for biological pretreatment of lignocellulose for second biofuel production. To elucidate the underlying molecular mechanism involved in lignocellulose deconstruction, genomic and transcriptomic analyses were carried out for I. lacteus CD2 grown in submerged fermentation using ball-milled corn stover as the carbon source. Resu...

متن کامل

Bioflocculant production from untreated corn stover using Cellulosimicrobium cellulans L804 isolate and its application to harvesting microalgae

BACKGROUND Microalgae are widely studied for biofuel production. Nevertheless, harvesting step of biomass is still a critical challenge. Bioflocculants have been applied in numerous applications including the low-cost harvest of microalgae. A major bottleneck for commercial application of bioflocculant is its high production cost. Lignocellulosic substrates are abundantly available. Hence, the ...

متن کامل

Comparative Study of Alkali and Acidic Cellulose Solvent Pretreatment of Corn Stover for Fermentable Sugar Production

As an immerging lignocellulose pretreatment strategy, cellulose solventbased pretreatment can break down interand intra-molecular hydrogen bonds and disrupt the rigid structure of cellulose. Two cellulose solvent pretreatments were examined and compared in this study: NaOH/urea and concentrated phosphoric acid. Pretreated corn stover substrates were characterized by optical microscopy, confocal...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2016